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ABSTRACT 

The global coverage of a satellite allows us to 
investigate areas that are difficult to access due to 
remoteness or ruggedness. We intend to use the GOCE 
gradiometric observations to detect unknown tectonic 
features. At the present stage of the GOCE mission  
we take the error levels of the observations to estimate 
the resolution of known density discontinuities of the 
Earth crust: the crust-mantle and sediment-basement 
transition. The spherical harmonic expansion of mass 
distributions is compared with the estimated degree 
error curves of the gravity field. We find that the GOCE 
data will contribute to a better resolution of these 
discontinuities by one order of magnitude for degree 
between 52 and 200 compared to the EGM2008 gravity 
field model. The geodynamic context affects the 
resolution as it controls the average Moho depth, 
shallower levels being better resolved. For the basement 
the dominant resolution parameter is the density 
contrast across the interface. 
 
1. INTRODUCTION 

The GOCE satellite is the first mission to carry a gravity 
gradiometer on board with the goal of improving 
knowledge of the global Earth gravitational field. It was 
launched on 17th March 2009 and has been acquiring 
data since then, following a 6-month calibration phase. 
The goal of our work is to estimate the geologically 
relevant structures which can be usefully studied with 
the GOCE data. We intend to estimate the spatial 
frequency range in which the GOCE satellite data can 
be used to improve existing global gravity models. 
We consider the crust-mantle interface (Moho) and the 
top basement, both giving rise to important density 
variations which are near-ubiquitous in the Earth crust. 
We consider continental areas because in oceanic areas 
the field derived from satellite altimetry (e.g. [1]) has a 
superior spatial resolution. The existing global gravity 
models (e.g. [2],[3]) are defined by their development in 
spherical harmonics of the gravitational potential V: 

( ) ( )









+






+

=

∑∑
= =

N

n

n

k
nknknk

n
e PkSkC

r
R

r
GMrV

1 0
sinsincos1

),,(

ϕλλ

λϕ

 (1) 

 
The field is defined by the Stokes coefficients Cnk and 
Snk and their relative errors, δCnk, δSnk. N is the 
maximum degree of the expansion, G the gravitational 
constant, M the Earth mass, r the geocentric distance, φ 
the latitude, λ the longitude of the computation point, Re 
the equatorial radius of the Earth ellipsoid. The degree 
error Cn is defined as: 
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Since the field and its error are expressed in spherical 
harmonics, it is natural to carry out the sensitivity 
analysis in the harmonic expansion of the mass.  
We consider a spherical shell of radius R, thickness 
t(φ,λ) and volume density ρ(φ,λ). We may define the 
surface density as m(φ,λ) = t(φ,λ)·ρ(φ,λ). The surface 
density is expanded in terms of spherical harmonics 
leading to:  
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The disturbing potential T generated by such a mass 
distribution is given by: 
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The gravity anomaly ∆g is: 
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The vertical gravity gradient component Tzz is: 
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The half-wavelength of a feature on the Earth surface 
corresponding to the harmonic expansion complete up 
to degree and order n is [4]: 
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The GOCE satellite is expected to contribute to the 
gravity field up to degree and order 200, which 
corresponds to a half-wavelength of 112 km. 
The relations (4)-(6) can be used either to compute the 
fields for a given mass or, vice versa, to compute the 
mass from a given field. We use these relations to 
determine the smallest surface density that can be 
detected, given the degree error of the field. We 

consider the mass to be either at the level of the crust-
mantle boundary, or at the level of the basement. We 
compare the error curve of the recent harmonic 
development of [3] with that expected for the GOCE 
mission. 
 
2. DEGREE ERROR CURVES 

The error-values of the Stokes coefficients for the 
EGM2008 model are published together with the Stokes 
coefficients. We convert the degree error-values to an 
error in terms of gravity anomalies as follows:  
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with GM=3986004.415 108 m3s-2 and Re=6378136.3 m. 

For comparison we use the error degree median values 
for GOCE. The calculations are based on the simulated 
data of the End to End simulation [5] for the AR3 test of 
the High Level Processing Facility [6]. The spherical 
harmonic coefficients were derived with the so-called 
space-wise approach [7] by combining the gravitational 
potential estimated from kinematic orbits with the 
simulated gravity gradients observed by the on-board 
gradiometer. The absolute error is significantly degraded 

Figure 1: Single degree error of gravity anomaly (errGA) derived from the error degree variances of the 
gravity model EGM2008 and from the simulated GOCE error degree median. The cumulative error
curves (sum_errGA) are also shown. GA_EGM08 is the degree amplitude of the gravity anomaly and
sumGA_EGM08 the cumulative degree amplitude (model EGM08) 



 

at low orders due to the polar gaps (GOCE orbital 
inclination of 96.7°), which is the reason why the degree 
error is estimated by degree medians and not by degree 
variances. The latter would be too much influenced by 
the effects of the polar gaps and would overestimate the 
error. In Fig. 1 the error curves for both models are 
shown, converted to errors of gravity anomaly. For 
degrees up to 120 the EGM2008 model mostly contains 
satellite gravity observations, for higher degrees the 
field stems from terrestrial data. The uncertainty for the 
simulated GOCE gravity anomalies is smaller than the 
existing gravity model EGM2008 for degrees between 
52 and 200. The window changes slightly when 
considering the cumulative error curves, with smaller 
errors for GOCE between degree 58 and 200. 
 
3. RESOLUTION OF THE CRUST-MANTLE 

INTERFACE AND OF THE BASEMENT 

The resolution of the Moho is estimated considering a 
spherical shell at average depth d with surface density:  
  

),(),(),( λϕλϕρλϕ tm ⋅=  (9) 
 
with thickness t and density ρ. The surface density can 
be interpreted as the oscillation of the crust-mantle 
boundary about the average depth d. In that case we 
may assume a constant density equal to δρ, the density 
difference between crust and mantle; δt is then the 

was used with a flat sheet mass in [8,9]. Given the 
degree error δ∆gn of the gravity anomaly, the resolution 
of the expansion terms of the surface density is derived 
from equation (5) and (8) and yields: 
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 terms of oscillation amplitude the resolution at degree In

n is: 
 

( )
n

n

e

e

e
n C

dR
R

R
Mnt

δρπ
δ 1

4
12

2

2

+









−

+
=  (11) 

 
he Moho resolution at degree n depends on the degree T

error and on the average depth of the interface. In turn, 
the average depth depends on the geodynamic context. 
The nuclei of continental plates are formed by cratons, 
the oldest crustal components, with Moho depths near 
45 km. Extreme Moho depths are found below high 
topographic plateaus (e.g. Tibetan plateau), with 
average depths of 70 km over large areas up to 500 km 
in extent. The Moho resolution degrades with increasing 
depth (equation 11).  

amplitude of the oscillation. An analogous approach 

Figure 2: Resolution of Moho undulations. Average depth between 30 km and 70 km. Density across
interface: 500 kg/m3. Based on single degree error curve of global gravity model EGM2008 and the
simulated GOCE error degree median 



 

In Fig. 2 the errors based on the simulated GOCE and 

he sediment-basement transition is an intracrustal 

the EGM2008 single degree error curves are shown. We 
have set the density contrast equal to 500 kg/m3 and the 
average depth equal to 30 km, 45 km and 70 km. We 
find an improvement by using the GOCE gravity model 
for degrees 52 to 200. The average depth affects 
resolution decisively, reducing it by almost an order of 
magnitude at degree 100 when passing from 30 km to 
70 km. An example of a useful application is the 
Tibetan plateau where the spectral analysis [10;11] of 
the Bouguer field showed the presence of strong signals 
at wavelengths between 250 km and 400 km, well 
within the improved range. 
 
T
boundary of common interest. Where a well defined 
density contrast between the two layers exists, this 
boundary can be treated with the same technique  
we used for the crust-mantle boundary. In this case  
the average depth is 0 to 10 km, the greater value 
corresponding roughly to half the thickness of deepest 
basins [12]. Realistic values for the density difference 
can be assumed to be 2700–2000 kg/m3 = 700 kg/m3 
down to 2700–2650 kg/m3 = 50 kg/m3. We present a 
series of resolution curves that vary according to the 
density and reference depth. Inspecting equation (11) 
we deduce that resolution is inversely proportional to 
the density contrast and moderately dependent on the 
average thickness of the basins, d being much smaller 
than Re. The curves are shown in Fig. 3: the variation 

due to d is hardly seen in the figure, the density 
variation being the dominant parameter. The basins we 
can investigate must be of large dimensions, with the 
short dimension greater than 112 km (half-wavelength 
of harmonic degree 200 using relation (7)). The cratonic 
and intracratonic basins are particularly suited as they 
are mostly of large dimensions: examples are the Tarim, 
Amazon, Michigan, North-Africa basins, Barents Sea, 
and West Siberian basin (e.g. [13]). These types of 
basins are not well understood, as they are set on thick 
crust and seem to be associated with anomalous upper 
mantle densities (example Barents Sea basins; [14]).  
 
Another question concerns the sensitivity of the tensor 
components observed at GOCE satellite height 
compared to terrestrial measurements. Terrestrial 
gravity measurements are much more readily available 
than terrestrial tensor observations. This leads us to 
invert for the smallest crustal mass changes observable 
considering the error level of the potential second radial 
derivatives observed at the satellite height and that of 
the gravity anomalies obtainable with an airborne 
gravity campaign. Here we analyze both in terms of the 
information that can be retrieved for the crustal 
densities.  
The degree error of the airborne gravity measurements 
is generally unavailable, so we have to estimate it 
starting from the average error level of an observation 
campaign. Referring to a root mean square (r.m.s.) 
measurement error δ∆g, the degree error is here obtained 

Figure 3: Resolution of top basement. Average depth between 0 km and 10 km. Density across interface:
700 to 50 kg/m3. Based on simulated GOCE error degree median 



 

assuming uniform distribution on each spherical 
harmonic component inside the degree interval defined 
by Nmin=120 and Nmax=200. The degree error δ∆gn is 

en estimated by: 
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.s. δTzz at satellite height. 
he estimated degree error is: 

 

 
With the aim of comparing gravity gradient and gravity 
anomaly error levels, we define the degree error of the 
potential second radial derivatives analogously, starting 
from the observation error r.m
T
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he shell is given by 
solving equation (9) for density: 

 

 
The density resolution of the spherical shell model 
assuming a fixed thickness k of t
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Defining h as the 
the smallest detecta

height of the observation point,  
ble density variation starting from 

gravity anomalies is: 
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Starting from the potential second radial derivatives, it 
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ple is the problem of defining the crustal 

ensity variation given the crustal thickness after 

the West Siberian basin, the density variations of a 

d
correcting the observations for crustal inhomogeneities 
and mantle density variations. A problem of this sort is 
realistic, as the upper crust is accessible with active 
seismics and geological inferences and the mantle 
density can be deduced from global seismic tomography 
models (an example is treated in [15] discussing the 
West Siberian basin). Referring to this example of  

Figure 4: Resolution of density in the lower crust. Model: layer 10 km thick at the base of the crust, top
at 30 km depth. Starting data: airborne gravity anomalies at 1000 m quota and satellite observed gravity
gradients Tzz at 250 km quota. Different levels of measurement error 



 

spherical shell with k=10 km thick, d=30 km depth, are 
inverted. In order to obtain a complete picture we make 
the error levels vary in a large range of values, covering 
4 orders of magnitude, both for the gravity anomaly 
(equation 12) and for the vertical gravity gradient 
(equation 13). The error of Tzz observed at satellite 
height (250 km) is taken to be 0.1 mE, 1 mE, 10 mE and 
100 mE. These values have been chosen considering the 
simulated r.m.s. error of Tzz along orbit, estimated to be 
4 mE after various calibrations and filtering, and 550 
mE before processing [7]; the error of ∆g observed at 
1000 m height is taken to be 0.01 mGal, 0.1 mGal,  
1 mGal and 10 mGal. Typical noise in an airborne 
gravity survey is about 1 mGal at 4 km half-wavelength 
[16], but the error is greater at longer wavelengths. The 
smallest value (0.01 mGal) is probably unrealistic, but is 
used here as a reference. In Fig. 4 the level of density 
resolution of the lower crustal density layer is shown: 
starting from the airborne gravity data the degree has a 
very small effect, whereas for increasing degree the 
resolution worsens when using the Tzz at satellite height. 
At intermediate degree (n=140) the density resolution of 
the Tzz at satellite height with an r.m.s. of 10 mE is 
comparable to that of a gravity observation at 1000 m 
quota with a r.m.s. of 10 mGal.  
 
4. DISCUSSION 

ur goal is to use the GOCE datO a for improving 
ructure. This can be done by 

cal harmonic development of the 

egree error curve of the GOCE satellite 
allest mass detectable either at 

l level. In the spherical 
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knowledge of crustal st
using either the spheri
gravity field or directly the gradiometric measurements 
of GOCE at the satellite height. The model of a 
spherical shell inside Earth is convenient in our 
study because its expansion coefficients in spherical 
harmonics can be linked with a few scaling parameters 
directly to the gravitational potential and its functionals. 
In Cartesian coordinates a similar model is that of a 
plane sheet of varying density, or a boundary separating 
two layers of different density. Then the gravity field is 
calculated applying the well known Parker series 
expansion [17, 18] in the spectral domain. In the present 
work we used the degree errors of the gravity model to 
estimate the sensitivity in the density or the thickness of 
the shell. The values we found are the basis for the 
practical application that intends to find crustal density 
variations in a geologic area of interest. We have 
demonstrated that in a certain wavelength range GOCE 
will improve the resolution of the mass changes. In 
practice the observed field is due to mass changes in the 
entire crustal column, so the field contributions of 
different crustal depths must be separated before 
applying the inversion with the shell model. The 
recovery of crustal thickness variations or of density 
inhomogeneities at the base of the crust will depend 
very much on the ability to strip the observations from 
the superficial layers. In order to accomplish this task, 
the gravity data have to be integrated with models of the 

geologic context, knowledge of the geologic units and 
results on physical parameters as well as density 
obtainable from geophysical methods that retrieve 
seismic velocity, magnetic susceptibility or electrical 
conductivity.  
 
5. CONCLUSION  

he simulated dT
was used to infer the sm
the Moho or at upper crusta
harmonic expansion we find that for degrees between 
about 60 and 200 the improvement brought by GOCE 
should be about one order of magnitude in terms of 
detectable mass anomalies. This translates to an 
improvement in the detection of density anomalies  
or in the definition of crustal thickness variations. 
Concerning the basement depth variations at upper 
crustal levels, the resolution depends much more on the 
density contrast between sediments and basement than 
on the depth of the interface. The expected resolution of 
density changes in the lower crust using the observed 
tensor component Tzz at GOCE satellite height is 
comparable to that of an airborne gravity survey at  
1000 m height with a root mean square error between  
1 and 10 mGal at a spatial resolution of about 160 km. 
The relative performance of the satellite derived gravity 
gradient is better at longer wavelengths. 
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