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S U M M A R Y
We present a new 2-D analytical solution of the fourth-order differential equation, which
describes the flexure of a thin elastic plate.

The new analytical solution allows the differential equation for an elastic plate to be solved
for any irregular shaped topography with a high spatial resolution. We apply the new method to
the Central Andes. The flexural rigidity distribution calculated by this technique correlates well
with tectonic units and the location of fault zones, for example, the Central Andean Gravity
High correlates with the presence of a rigid, high-density body.
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1 I N T RO D U C T I O N

The integration of geophysical, petrophysical and geological data

allows the investigation of key processes of mountain building, the

location of fault zones and the deformation processes within the

crust. The spatial distribution of flexural rigidity indicates significant

structural units of the crust as a function of their isostatic response.

The flexural rigidity of the elastic lithosphere can be estimated us-

ing a fourth-order differential equation describing the flexure of a

thin elastic plate (Turcotte & Schubert 1982; Göldner 1988). Hertz

(1884) proposed three different solutions for the simple case of an

ice plate floating on water. The deflection was calculated for a point

load without taking the gravity into account. However, applied to

geological problems the flexural values (in range of μm) were too

small compared with the expected depths for a crust–mantle inter-

face. For this reason spectral methods (coherence and admittance)

have been preferred for the solution of the differential equation in

the frequency space (Watts 1988). For continents, the reliability of

the spectral technique has been questioned, because of drawbacks

connected to the spectral approach (Braitenberg et al. 2002). The

first drawback for the inverse calculation of the flexure from gravity

observations is that the admittance method becomes unstable in the

case of small topographic heights. Secondly, a large spatial window
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(at least 375-km side length) is required for the analysis (Macario

et al. 1995). Even with new wavelet transform techniques using

Forsyth’s method (Swain & Kirby 2006) or methods which use a

combination of admittance and coherence (Daly et al. 2004) such a

side length is still necessary for higher flexural rigidity values. Ac-

cordingly the flexural rigidity distribution is estimated only roughly

and correlation with smaller tectonic features not possible. Some

of the disadvantages of the spectral methods were overcome by the

convolution approach developed by Braitenberg et al. (2002). Al-

though much work has been done to date, it is still questionable from

the physical point of view, if it is sufficient to calculate the rigidity

over an area of a side length lower than 375 km. The purpose of

this study is to present a new analytical solution for an elastic plate

(ASEP), making use of three solutions proposed by Hertz (1884).

We evaluate all three solutions for their feasibility. The ASEP will

be compared with the inverse Fourier transform of the transfer func-

tion of the spectral methods (Watts 2001), as both solve the same

differential equation. As a case example for the application of the

ASEP, we calculate the flexural rigidity distribution for the Central

Andes, where an extensive database is available to us. We aim to

establish our new method for calculating the flexural rigidity distri-

bution with a high spatial resolution in order to compare the results

with geological information.

2 M E T H O D

The new analytical solution solves the differential equation of the

fourth order for any irregular shape of the topography. The equation,

which was analytical solved, calculates the flexure w of a thin elastic

plate:
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� · �w + 1

β4
w = 0, (1)

with � as the Laplace operator, which can be written in Cartesian

coordinates: � = ∂2

∂x2 + ∂2

∂y2 . The flexure parameter β is related to

the flexural rigidity D by:

β = 4

√
D

(ρm − ρc)g
= 4

√
ET 3

e

12(1 − ν2)

1

(ρm − ρc)g
, (2)

where ρm and ρ c are the densities of the mantle and the crust,

g is the acceleration due to the gravity, ν is Poisson’s ratio, E is

Young’s modulus and T e is the elastic thickness. The density ρ i of

the material that infills the flexural depression is assumed to be equal

to the crustal density ρ c. The set of three solutions proposed by Hertz

(1884) was modified in order to apply it to the elastic lithosphere. The

first solution is in the point of origin of the coordinate system, where

the point load P acts. The deflection w0 is expressed by Wienecke

(2006):

w0 = P

8(ρm − ρc)gβ2
. (3)

The formula describes the maximum depth of the deflection. For the

second solution results (Watts 2001):
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(4)

We will call this solution ‘logarithm function’. The radius rx,y is the

normalised radial distance from the point of origin with:

rx,y =
√

x2 + y2

β
. (5)

We will use also a third solution for the deflection (Wienecke

2006):

w(x, y) = P

2πβ2(ρm − ρc)g
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This solution is called ‘sine function’. All three functions are

composed to retrieve one analytical solution for the computation of

the flexural rigidity (Fig. 1). Investigations show that the logarithm

function is only valid for small values of the radius rx,y. On the other

hand the values for the deflection produced by the sine function

are underestimated for smaller values of the radius rx,y. The new

analytical solution for an elastic plate (ASEP) by Wienecke (2006)

is composed of all three functions and changes from the logarithm

function into the sine function at a distance r (x, y) = 2β, since at

this point both functions have the same deflection value (see Fig. 1).

Figure 1. As example the analytical solution for an elastic plate (ASEP) is

calculated for a point load with h = 1 km, D = 1.11·1021 Nm, g = 9.81 m s–2,

and the densities ρm = 3350 kg m–3 and ρ c = 2700 kg m–3. The ASEP

consist of three different solutions in dependence of β: (a) solution for the

point of origin, (b) sine and (c) logarithm function. The solutions are shown

on a profile in the x-direction (therefore, r (x, y) corresponds to x in this

case). Since at the point 2β the sine and logarithm functions have the same

deflection value w, the ASEP consist of a logarithm function for the close

range for all r (x, y) ≤ 2β and then changes to a sine function for the

wide range for all r (x, y) > 2β. The ASEP (red colour) is in a very good

agreement with the spectral solution (orange colour).

In spectral methods the differential equation (eq. 1) was solved

with the fast Fourier transformation (FFT) using a transfer function

according to the Vening–Meinesz approach. If we set the density of

the material that infills the flexural depression ρ i equal to the crustal

density ρ c, the transfer function �δ for the wave number k is given

by:

�δ(k) = ρc

ρm − ρc

[
Dk4

(ρm − ρc)g
+ 1

]−1

. (7)

The spectral solution for a point load in the space domain is the

inverse Fourier transformation of the transfer function (eq. 7). The

comparison of the ASEP with the spectral solution for a point load

shows a very good agreement between both solutions.

In order to apply the ASEP on a real topography we use the con-

volution approach as described by Braitenberg et al. (2006). For

each grid node of the topographical input grid a flexure curve is

calculated with the ASEP. Each grid node is defined by (x, y) coor-

dinate pairs and a height (z). This height is used, with the density and

the acceleration due to the gravity g, to define the point load. Each

grid value is, in essence, a distributed ‘rectangular’ load. However,

a point load is a rectangular load related to a unit area. Thus, the

ASEP has to be ‘normalized’ to each grid node value by taking the

area A = dx·dy into account, where dx is the grid node distance in

x-direction and dy is the grid node distance in y-direction, respec-

tively. This method was described and tested by Wienecke (2006).

The superposition of all flexure curves defined by convolution pro-

vides the flexure crust–mantle interface (CMI). The comparison for

a CMI calculated with the spectral method (eq. 7) and the ASEP

is in a very good agreement (Wienecke 2006). The flexure CMI is

calculated with the ASEP as a function of flexural rigidity. In view

of the precision of the calculation and in order to avoid edge effects

the area of the input topography is required to be larger than the
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area of the computed flexure CMI by the amount of the radius of

convolution. The convolution radius can be directly calculated as a

function of the flexure parameter β (Wienecke 2006), and therefore,

also as a function of rigidity and density contrast (e.g. for a rigidity

D = 8.89 × 1018 Nm is the radius of convolution R = 24 km and for

D = 7.11 × 1023 Nm is R = 225 km. This means that the calculated

flexure CMI will be 225 km smaller than the topography at each

side).

We compute a set of flexure CMIs for a range of rigidity values

D = 8.89 × 1018 Nm till 2.44 × 1024 Nm, which corresponds, for

the Poisson ration ν = 0.25 and the Young’s modulus E = 100 GPa,

to the elastic thickness values T e = 1 km till 65 km (see eq. 2).

Thus the flexure CMI corresponds exactly to one flexural rigidity

value. Hence, the comparison of the computed flexure CMIs with

a reference CMI (e.g. derived from 3-D density models) over an

area with a given side length L provides one constant rigidity value

for this subsection, resulting in a high spatial resolution of the 2-D

flexural rigidity distribution.

The comparison of the flexure CMIs with a reference CMI is done

by the choice of the minimum root mean square value (Braitenberg

et al. 2006). For the reference CMI we make use of the gravity CMI,

which was derived by Tassara (2006) using a 3-D density model.

Figure 2. Topography of Central Andes with overlain Bouguer gravity and the main tectonic features. The red box shows the approximate location of the study

area. The orange line shows the location of the cross section. The Central Andean Gravity High (CAGH) is located in the middle of the towns Antofagasta,

Salta and Tucumán. Because of a similar observed topography compared to the surrounded area a much lower Bouguer gravity is expected. That is one reason

why it is called ‘High’. The other reason is, that it corresponds to a positive isostatic gravity anomaly (Vening Meinesz isostasy). On the left side the outlines

of the CAGH are shown (violet coloured) as it is observed in the low pass filtered isostatic residual gravity field (figure source: Götze & Krause 2002).

3 A P P L I C AT I O N T O C E N T R A L A N D E S

Our methodology has been applied to the Central Andes (15◦S–

33◦S). Since 1993 the members of the collaborative research pro-

gram 267 ‘Deformation processes in the Andes’ have established a

broad scientific data basis aiming to identify the key processes con-

trolling the orogeny and plateau development in the Central Andes

(Reutter et al. 1994; Götze & Migra-Group 1996; SFB267 2002).

A main feature in this area is the Central Andean Gravity High

(CAGH), which is limited in the west by the pre-cordilleran fault

system and in the east by the Ocloyic fold and thrust belt (Fig. 2).

The gravity signature of large amounts of Ordovician basic intru-

sive is one possible explanation for the CAGH (Götze & Kirchner

1997). The meaning of the CAGH was discussed in view of its

evolution and structure (Bahlburg & Herve 1997; Götze & Krause

2002) and it was suggested that the anomalous masses causing the

CAGH have played a major role in the tectonic development of the

Andean region. The CAGH corresponds to a seismic high-velocity

zone located at shallower depths (Lessel 1998; Lucassen et al. 1999;

Haberland et al. 2003). Studies the gravity anomalies of the CAGH

indicate a 400 km long and 100–400 km wide high-density body at

15 km depth (Götze & Krause 2002).
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Figure 3. Cross-section of topography, Bouguer anomaly and the depth of the gravity crust–mantle interface (CMI) through the study area. In the area of the

CAGH (68◦W–67◦W), which is coloured in grey, the observed topography is similar compared to the surrounded area (69◦W–69◦W), but the depths of

the gravity CMI are much shallower. Because, given similar surface loading the crustal structure differs, we suggest that a higher flexural rigidity could explain

the shallower gravity CMI and, therefore, the observed Bouguer gravity anomalies.

3.1 Data

Gravity data of the Central Andes were collected by field mea-

surements and offshore shipboard campaigns (Götze et al. 1990).

Tassara (2006) constructed a 3-D density model on this database us-

ing the modelling software IGMAS (Götze & Schmidt 1998). The

density model provides information about depth, density contrast

and undulation of the CMI, which are important input parameters

for calculating the flexural rigidity.

A topographic cross-section through the study area (Fig. 3) shows

the predicted crustal structure due to the 3-D gravity modelling

(Tassara 2006). In the area of the CAGH (ca. 68◦W–67◦W), which

is coloured in grey, we observe similar topography compare to the

surroundings (ca. 69◦W–68◦W) and assume, therefore, similar sur-

face loading. However, the predicted crustal structure from the ob-

served Bouguer anomaly differs. We suggest that spatially varying

of the flexural rigidity could explain the observed Bouguer gravity

anomalies.

The topography/bathymetry from GEBCO (NGDC/NOAA 2003)

was transformed to a ‘model topography’, which means that every

point of the input grid with a height coordinate z < 0 was multiplied

with the factor (ρc−ρw)

ρc
= 0.645 for an assumed average density of

the crust ρ c = 2900 kg m–3 and a density of water ρw = 1030 kg m–3.

This model topography was used as input grid for the calculation of

flexure CMIs. The flexure is computed with the analytical solution

for each grid node with a reference depth of 30 km, same density

of crust and a mantle density of ρm = 3380 kg m–3. The choice of

these parameters is constrained by the average values of the density

model. The reference depth corresponds theoretically to the crustal

plate thickness, when no load is applied or to which deflection value

the solution should converge in a case of infinitely high flexural

rigidity (Wienecke 2006).

3.2 Distribution of flexural rigidity

The flexural rigidity distribution was calculated for subsections,

which are squares with a side length of L = 60 km. The flexural

rigidity is often expressed by the elastic thickness (eq. 2) assuming

a constant Young’s modulus of E = 100 GPa and a Poisson ratio

ν = 0.25 (Burov & Diament 1995).

Fig. 4 shows the elastic thickness distribution and location of lin-

eaments, salt lakes and the CAGH (Reutter et al. 1994; Götze &

Krause 2002; SFB267 2002). The Andean mountain belt is char-

acterized by an area of low rigidity values, which indicates a weak

crust (or a weak mantle, respectively). This result is in very good

agreement with the geological studies suggesting a softening of the

mountain belt due to fluid and melt associated processes driven by

the subduction (SFB267 2002).

The location of the CAGH correlates with the presence of a

rigid body compared to the surrounding area (yellow coloured in

Fig. 4), which agrees with the observed high seismic velocities

(Schurr 2001). High elastic thickness values are further estimated

for the Brazilian shield. A very good correlation is observed between

the direction and the location of faults and areas of rapid changes

in the elastic thickness (from low to higher values). The Archibarca

fault and the Calama–Olacapato–El Toro lineament (Fig. 4) are lo-

cated between the borders of zones of high and low elastic thickness.

Also the direction of the Atacama fault zone, the pre-cordilleran fault

systems and the Ocloyic fold and thrust belt correlate well with the

flexural rigidity distribution.

4 D I S C U S S I O N

This method bears the advantage that, first, the flexure CMI is com-

puted for the entire size of the study area and then—in a second
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Figure 4. The rigidity distribution are overlain with geological lineaments, salt lakes and outline of CAGH in yellow (Götze & Krause 2002).

Figure 5. Rigidity distribution of Central Andes for different side lengths of subsections: 340 km (left side) and 60 km (right side).

step—the flexural rigidity is estimated by comparison of this flexure

CMI with a reference CMI over a smaller subsection. Furthermore,

the ASEP provides a solution for the point of origin, where the point

load acts (Fig. 1). Therefore, the side length of the subsections can

be chosen arbitrarily and consequently also the flexural rigidity is

resolved with high resolution. Because of the high spatial resolution

of the ASEP, a correlation with local tectonic features and faults can

be obtained. In the admittance calculations the topographical input

C© 2007 The Authors, GJI, 169, 789–794
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stands in the denominator, therefore, the methods become unstable

in case of small topography, while the analytical solution can be

applied for any arbitrary small topographical input.

The good correlation between the flexural rigidity distribution

pattern and the tectonic features indicates that we are able to re-

solve different deformation patterns. This means that we can predict

tectonic units expressed by changes in flexural rigidity in areas where

the geological information is not available. Due to its simplicity the

method is applicable on study areas where only few information are

accessible.

The analytical function is based on the assumption of a plate of

constant thickness and variable thickness would require solving the

asymmetric analytical function. Furthermore, the solution would be

dependent on the size of the analysis window due to its asymmetry.

However, the analysis applying different window sizes shows that

our results are independent of the side length L of the subsections

(Fig. 5). We compare the results of the flexural rigidity distribution

calculated with a grid size L = 340 and 60 km. We observe, that

the smaller grid size increases the resolution of the flexural rigidity

calculation, but leads not to different results. The results of the rigid-

ity distribution converge to each other. Uncertainties connected to

input data are certainly more substantial than the deviation between

the symmetric and asymmetric solution.

In this paper the subsurface loads were only taken into account

via the reference CMI, which was derived with 3-D gravity mod-

elling by Tassara (2006). In this paper the eqs 2–4 are shown for a

point load P. The ASEP can be applied for surface, subsurface or

combined loading, which was done and tested by Wienecke (2006).

Therefore, the input grid contains the information about the topo-

graphic load, the subsurface load or the combined load, respectively.

Our method bases on the thin elastic plate approximation and de-

pendency on time and temperature are not yet considered. In the

analytical case the quantities and influence of the input parameters

and the interrelationship among these can be recognized. This is an

important task for future work.
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