



### NEW INSIGHTS INTO THE NORTH-CENTRAL AFRICAN LITHOSPHERE FROM THE GOCE GRAVITY AND GRAVITY GRADIENT FIELDS

# GNGTS, 14-16 November 2011, Trieste

### Carla Braitenberg,

### Tommaso Pivetta, Patrizia Mariani

Dipartimento di Geoscienze, Via Weiss 1, Trieste (Italy)

Si ringrazia

Agenzia Spaziale Italiana – GOCE-Italy

# **GOCE** satellite



## The GOCE Sensor System



# **Current global gravity fields**

- GOCE-satellite- global potential fields
  - -N=250, 80 km resolution

(Bruinsma et al., 2011, Migliaccio et al., 2011, Pail et al., 2011)

- EGM2008 (Pavlis et al., 2008): N=2159, resolution 9 km
  - Combined terrestrial data and different satellites.
- EIGEN06 (Förste et al., 2011)

## GOCE: for crustal and lithospheric studies and for quality control of terrestrial data

- EGM08: high resolution of 9km is nominal, field may be only interpolated
- Terrestrial data in many countries very inhomogeneous in distribution
- EGM08 affected by errors in terrestrial data
- GOCE truly global.
  - Although of lower resolution, it gives information on quality of higher resolution terrestrial data.

# Downscaling of terrestrial observations and quality control with GOCE



$$\bar{g}_{lm}^{K} = \frac{1}{K} \sum_{i=1}^{K} g_i$$
$$\sigma_K = \sigma_T / \sqrt{K}$$

$$\sigma_g = \bar{g}_{lm} - g_{GOCE}$$

## **Residual: EGM08 and GOCE**

Grav.Abs.Residual



GOCE: Pail et al., 2011; N=250.

## **GOCE** satellite in North Africa

- Aims of our investigation:
  - model lithospheric and crustal densities

Applications:

- Seismic and volcanic risk assessment
- Natural resources

# Major subdivisions of the crust





Begg et al., 2011

### Geologic structures in North-Central Africa. Isolated Chad line



See Poster Tommaso Pivetta: modeling the Benue trough



#### Gravity Anomaly GOCE



#### (Braitenberg et al., 2011, GSL, in press)



(Braitenberg et al., 2011, GSL, in press)



(Braitenberg et al., 2011, GSL, in press)

### **North Central African Sediment isopachs**





### **North Central African Crust**



Surface wave tomography. Inversion of Rayleigh and Love wave Dispersion curves (Pasyanos & Nyblade, 2007)

## Lithosphere velocity perturbation



Surface wave tomography, Vs Fishwick, 2010

# Geologic structures in North-Central Africa



(Braitenberg et al., 2011, GSL, in press)

### Chad "Banana High"



(Braitenberg et al., 2011, GSL, in press)

### Inverting for the source mass of the Chad line



## Source mass Chad high



### Differential upper-lower crustal velocity



Pasyanos& Walter, 2002

# **Results 1/4**

- GOCE data used for quality assessment of higher-resolution fields (EGM08)
- GOCE-model alone can resolve crust and lithosphere
- Geologic structures to be resolved with EGM08

# Results 2/4

- Chad high:
  - -flat crust of near 30 km
  - uncorrelated to sedimentary basins
  - correlates with upper-lower crustal differential S-wave velocity
  - –If located in lower crust: up to 180 km width, 15 km thickness. Smaller body if located at upper crustal level.

# Results 3/4

• Chad high:

—At South-western end of line outcrops of ultra-mafic rocks, Serpentinite, Talcschists. Compatible with Neoproterozoic suture linked to Pan-African orogeny (pers. com. Dr. Moussa, Polytechnique of Chad)

-Very unlikely to be coeval rift due to:

Geomorphological aspects- no topography.

# **Results 4/4**

- Chad high:
  - suture-> interesting for mineral exploration.
  - Missing on geologic maps: should be added as discontinuity in future.