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Abstract: Global Positioning System observations in the Alps have now sufficient 

precision to reliably observe vertical surface movement rates at the orogen scale. The 

geodynamic modeling of converging plate margins requires constraints on the origin 

of orogenic uplift, of which the two end members are pure crustal uplift and crustal 

thickening, respectively. Gravity change rates joint with uplift measurements allows 

to distinguish the two mechanisms. We use vertical uplift rates over the Alpine range 

and the southern foreland basin, to predict the gravity change for different 

geodynamic hypotheses of pure uplift and mantle inflow, or crustal thickening and 

isostatic Moho lowering. The sensitivity of gravity as a tool to distinguish the two 

mechanisms is investigated. This model differs from the predicted isostatic 

movements, based on the glacial history and the mantle viscosity, since the uplift is 

measured and not predicted. The estimate of this tectonic signal is important, when 

gravity change rates, as those obtained from GRACE, are interpreted exclusively in 

terms of hydrologic changes tied to climatic variation. It has been already shown that 

in some areas, as the Tibetan plateau and the Himalayas, the tectonic signal is not 

negligible. Here we estimate the effect of the tectonic signal for the uplift of smaller 

mountain ranges, as is the Alpine arc. Our results indicate that tectonic and 

hydrological signals superpose and we cannot ignore the tectonic signal when using 

GRACE to invert for the equivalent water height (EWH).    

Keywords: tectonic signals, GPS, satellite gravity model, Alpine arc 
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1. Introduction 

The Alps are the highest and the most extensive mountain range system that lies 

entirely in Europe, crossing eight countries: Italy, Austria, France, Germany, Slovenia, 

Monaco, Liechtenstein and Switzerland (see Fig.1) The Alpine orogen results from 

the collision of the European and Adriatic plates after subduction of intervening ocean 

basins (e.g., Dewey et al., 1973; Molnar and England, 1990; Pfiffner, 2014). The 

collision took place in the Tertiary but was preceded by other collision events in the 

Cretaceous (Gerrard, 1990). The Alpine orogeny was very complex and occurred in 

several phases from the middle Cretaceous to the Neogene, of which the collision 

between Europe and Africa was only one. Global Positioning System (GPS) data and 

earthquake focal mechanisms show that the Adria-Eurasia convergence is still active 

in the Eastern Alps (Serpelloni et al. 2016), whereas it is ceased in the western Alps, 

where seismotectonic and geodetic data indicate small extension across the belt. On 

the contrary, GPS vertical rates (e.g., Serpelloni et al., 2013) show that large part of 

the Alpine range is uplifting and a number of researchers put forward various 

mechanisms to explain this phenomenon. Several works concentrate on the Western 

Alps, such as Chéry et al. (2016) who investigated the rheological model in the 

western Alps and concluded that a significant part of the geodetic uplift may represent 

the coda of a postglacial rebound occurring during the Holocene. Nocquet et al. 

(2016) combined continuous GPS with leveling data spanning a century to study the 

present-day vertical motion in the western Alps and its surroundings. They thought 

that rock-uplift rates corrected for transient glacial isostatic adjustment (GIA) 
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contributions likely exceed erosion rates in the northwestern Alps and in the absence 

of active convergence, the observed surface uplift must result from deep-seated 

processes. Vernant et al. (2013) showed that in the western Alps low converge rates 

are measured, and concluded that the erosional processes are the predominant control 

on the present-day deformation and seismicity. Champagnac et al. (2007, 2009) 

proposed that the erosion of the Western Alps could explain part of the modern 

vertical motions through isostatic rebound. A further mechanism has been proposed to 

be due to lithospheric slab displacement that can disturb the isostatic equilibrium and 

result in vertical movement (Lyon-Caen et al., 1989; Singer et al., 2014; Fox et al., 

2015).  

 

Fig.1 Topography of studied area covering the Alpine arc (ETOPO1, Amante and 

Eakins, 2009) 

Topography uplift leads to mass redistribution, both at the earth surface and 

inside the earth, and as a result creates gravity changes. In this study we intend to 

model the mass changes that can be expected by topography uplift and for different 

assumptions on the deep processes accompanying the topography uplift. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Mass redistribution can be detected in changes of Earth’s gravity field observed 

either on ground or by satellites, for instance by the Gravity Recovery and Climate 

Experiment (GRACE) (Tapley et al., 2004a, 2004b). The GRACE mission records 

changes in Earth’s gravity field at spatial resolution of about 300 km and temporal 

resolution of one month, since 2002. On the other hand, ESA’s Gravity field and 

steady-state Ocean Circulation Explore or GOCE mission (Floberghagen et al., 2011) 

has better spatial resolution than GRACE (about 80 km resolution) but a much shorter 

life time of about 5 years  (2009-2013), which limits its ability to detect the climatic 

or geodynamics changes (Pail et al., 2015a; 2015b). The static field of GOCE (Pail et 

al., 2011) has been shown to allow to identify geological structures and lineaments in 

different areas of the world (e.g. Alvarez et al., 2014; 2015a; Braitenberg, 2014; 2015; 

Li et al., 2017; Shin et al., 2015) and the time variable part has been shown to match 

expected changes generated by mega-earthquakes along the Andean subduction 

margin (Alvarez et al., 2015b). The GOCE field has been also shown to be useful in 

the control of terrestrial data of higher spatial resolution than the GOCE minimum 

wavelength (Bomfim et al., 2013).  

Therefore, in this study we use a GRACE-GOCE satellite combined Earth’s 

gravity model GOCO05S (Mayer-Guerr and GOCO team, 2015) to compute the 

observed gravity change signal and compare it with our prediction results. The 

contents of this manuscript are organized as follows. We first present the data, which 

include a decade of GPS vertical rates, ETOPO1 topography (Amante and Eakins, 

2009), CRUST1.0 Moho depth (Laske et al, 2013), GOCO05S Earth’s gravity model, 
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groundwater levels data and the GLDAS-1 Noah model (monthly and 0.25 degree 

resolution). Then we briefly introduce the methodology, which aims at matching the 

observed vertical rates and hydrologic data with the observed gravity changes. For 

this purpose, we consider different mechanisms (Cloetingh and Ziegler, 2009; 

Cloetingh and Burov, 2011; Braitenberg and Shum, 2017) to model the mass changes 

at the crust-mantle interface, which accompany the topography uplift. We then model 

the expected gravity signal due to the hydrologic component based on observations, 

using both the measured underground water level data and the soil moisture models. 

Finally, the modeled data are compared with the GOCO05S observation signal of 

gravity change in time.   

2. Methodology 

2.1 Modeling the gravity change due to topographic uplift and crustal 

response 

We use two end-member mechanisms to model the tectonic signal. The two 

end-members represent the maximum and minimum mass change at Moho level that 

can be expected accompanying orogenic topographic vertical movements. The first 

model assumes that topography and Moho interface uplift at the same rate (see 

Braitenberg and Shum, 2017), implying mantle flow replacing the crust at the same 

rate. The second model assumes that topography uplift is isostatically compensated 

by crustal thickening implying Moho lowering at the rate defined by Airy’s 

hypothesis. The reason to use the Airy model and not a flexural model is due to the 

fact that the greatest expected Moho lowering for the flexural model is obtained with 
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zero flexural rigidity, which corresponds to the Airy response.  

 

 

According to Airy’s model, for a topography uplift rate of T /mm yr , the 

corresponding Moho lowering rate is defined by 

c

m c

h T


 
 


                                                                                                     

(1) 

Where 
m  and 

c  are the density of mantle and crust, respectively. Computation of 

the topographic and Moho gravity changes are done by first discretizing the static 

topography and the starting Moho depth (see Fig.2) by prisms (Uieda et al., 2016). 

The mass change due to topography or Moho movement is again discretized as prisms 

and added to the static prism model. The gravity change is obtained from subtracting 

the static model from the dynamic model.  

 

Fig.2 Moho depth (from CRUST1.0 model, Laske et al., 2013) 

The height of the calculation is 10km, in order to be above all elevations. The 
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adopted crust density value is 2670 3/kg m (Hinze, 2003) and the mantle density value 

is 3200 3/kg m (Lippitsch et al., 2003; Levandowski et al, 2014). In case of the 

topographic uplift we assumed positive crustal density contrast with respect to air 

while for Moho uplift we used the density contrast between mantle and crust. The 

positive mass change in case of Moho uplift physically is due to the influx of mantle 

replacing the space of the uplifting crust. The process is assumed to be slow enough 

that viscosity effects of the mantle do not significantly introduce a time shift between 

topography uplift and the mantle influx. The mantle movement towards the area in 

which Moho depth is changing contributes to a density change only where mantle 

replaces crust, with a considerable density contrast. The density changes in the mantle 

are assumed sufficiently homogeneous to not contribute significantly to the 

calculations, as their variation is much smaller than the density contrast between crust 

and mantle. The Moho uplift model would represent the topographic uplift controlled 

by dynamic, mantle-driven processes, that have been suggested to occur at plate 

margins (e.g., Faccenna et al. 2014). The Moho lowering model would describe a 

situation in which crustal thickening occurs, due to horizontal compression. 

2.2 Gravity change rate from GOCO05S 

We use the spherical harmonic synthesis (SHS) to compute the gravity changes 

observed from the GOCO05S model (Mayer-Guerr and GOCO team, 2015). The 

gravity changes g  reads 

   
2

n,m n,m2
0

GM R
1 T Y

R

nn n

n m n

g n
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(2) 
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where 8GM 3986005 10   m
3
/s

2
 is the geocentric gravitational constant, 

3R 6371 10  m is the Earth’s mean radius (which approximates the geocentric radius 

of the geoid surface), 
n,mY are the surface spherical harmonic functions of degree n  

and order m , 
n,mT  are the linear trend coefficients, and n  is the maximum degree of 

spherical harmonics, where for the GOCO05S model the value is 100. The GOCO05S 

trend coefficients were calculated integrating the GOCE observations with GRACE 

(metadata published together with the model). The 3-D position is defined in the 

system of geocentric spherical coordinates  ,r  , where r  is the geocentric radius, 

and  ,    denotes the geocentric direction with the spherical latitude   and 

longitude  . 

2.3 Gravity effect of hydrology 

The computation of the hydrologic gravity effect implies knowledge on the mass 

change due to hydrology. The direct observation limits to groundwater data from 

monitored wells. The soil moisture is an indirect measure that is available globally 

and that has a lower spatial resolution than the wells data. For both datasets we must 

determine the average linear rate change, which we determine together with a yearly 

oscillation. We use the following model to fit the data, where for each station the time 

series ( , , )if t  (i=1, 2… n. n is the number observations) has the following 

mathematical expression, 

0 1 2 3( , , ) cos sin    1,2...,i i i if t a a t a t a t noise i n                                    

(3) 

where 
0a  is the starting value at the time of origin,   

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

1a  is the linear trend,  

2a  is the annual cosine component,  

3a  is the annual sine component,  

 is the circular frequency with yearly period 

Eq.(3) can be rewritten as  

0 11 1 1

12 2 2 2

2

3

( , , )1 cos sin

1 cos sin ( , , )

... ... ... ... ...

1 cos sin ( , , )n n n n

a f tt t t

at t t f t
noise

a

t t t f ta

  

   

   

    
    
      
    
    

    

                                        

(4) 

Defining the design matrix as A  , solution vector as X   and the observation vector as  

Y , where 

1 1 1

2 2 2

1 cos sin

1 cos sin

... ... ... ...

1 cos sinn n n

t t t

t t t

t t t
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( , , )n

f t

f t

f t

 

 

 

 
 
 
 
 
 

Y                        

(5) 

Based on the least square rule, the solution for X  reads  

        T -1 TX = (A A) A Y                                                                                          

(6) 

The solution vector X will be space dependent and describes the local linear trend and 

phase and amplitude of the yearly variation for each hydrologic station. The stations 

are only available in the flat basin, and are unavailable when topographic elevation 

increases. We therefore refer to the global soil moisture model, which represents 

modelled variation of soil moisture in the first 2m of soil. The gravity change rate of 
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the soil moisture is obtained in spherical harmonics, concatenating the spherical 

harmonic analysis (SHA) and spherical harmonic synthesis (SHS) method to compute 

the gravity change. The SHA (Chao and Gross, 1987; Wahr et al, 1998) is defined as: 

 

2

ave 0 0

cos3
sin ( , ) (cos )

sin4 (2 1)

nm
nm

nm

C m
d d P

S mR n

  
      

 

   
    

    
                     

(7) 

 

Where in this study ( , )    stands for linear trend of soil moisture, 
ave  is the 

average density of the earth (5500 3/kg m ), (cos )nmP   is the normalized Associate 

Legendre Function (ALF). Finally, we combined equations (7) and (2) to compute the 

gravity change. According to the rule of thumb of SHA, we expand the soil moisture 

linear trend to degree/order 720 and limit the further analysis to degree 100, for the 

comparison with GOCO05S.  

3. Data 

3.1 Vertical rates from GPS and Moho model 

GPS vertical ground motion rates are updated from Serpelloni et al. (2013), 

using data up to the end of 2016, with a minimum of 2.5 and a maximum of 23 years, 

for a limited number of sites, from more than 800 continuous GPS stations operating 

in the study area (Fig. 1). The average time-span of GPS sites is 7.5 years. We refer to 

Serpelloni et al (2013 and 2016) for details on the GPS data analysis.  

The GPS velocities are realized in the IGb08 reference frame (Rebischung et al., 

2011), which is the GPS realization of the ITRF08 reference frame (Altamimi et al. 
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2011). The coordinate origin of the ITRF08 is theoretically defined as the mean center 

of mass of the total Earth system about which all Earth satellites orbit. Following Wu 

et al. (2011), the ITRF2008 origin realization is consistent with the mean center of 

mass at a level of 0.5 mm yr−1, in agreement with the results of Altamimi et al. 

(2011). 

The position of the gravity satellite GOCE and GRACE are precisely determined 

by GPS (e.g. Bock et al., 2011), and are also referenced to the Earth center of mass. 

Therefore the systems in which gravity rates are observed and rates are predicted from 

topographic uplift, are consistent. 

The rates of vertical land motion are shown in Fig.3, where the single station 

rates have been interpolated with adjustable tension continuous curvature splines, 

giving the minimum curvature solution (GMT tool surface, with tension 0.75, Smith 

and Wessel, 1990). Single GPS values and the smoothed vertical velocity field 

indicate that the Alpine range is overall characterized by positive vertical rates, with 

maximum values up to 2.5 mm/yr in the western and central Alps. The Po basin in 

contrast is subsiding with the maximum rate of -7 mm/yr. In the Pannonian basin and 

surrounding units we can observe uplift as well as subsidence, with possibly larger 

negative rates compared to the positive rate. The Paris basin is characterized by a 

prevailing subsidence with some parts having slower vertical motion than the general 

trend. In the Apennines, even though some stations are subsiding, most of the central 

part is uplifting, accordingly to Faccenna et al (2014). We use the GPS vertical rates 

to compute the gravity changes due to topography uplift and the corresponding Moho 
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uplift and lowering, according to the two extreme models.   

 

Fig.3 Rates of vertical land motions from GPS time series.  Updated from Serpelloni 

et al., 2013. 

ETOPO1 (Amante and Eakins, 2009) is a 1 arc-minute global relief model of 

Earth's surface that integrates land topography and ocean bathymetry. It is compiled 

from various global and regional datasets such as SRTM30 global topography, Baltic 

Sea bathymetry, Antarctica RAMP topography, Greenland NSIDC bedrock, GSHHS 

(Global Self-consistent, Hierarchical, High-resolution Shoreline). The Alpine and 

surrounding mountain regions (see Fig.1) have the maximum topography to about 

4000m while the main elevation of the Pannonian basin, Po basin and Paris basin is 

just about 450 m above sea level.  

The gravity effect due to mass changes at Moho level are calculated imposing 

the depth variations to a published Moho model. We refer to the model CRUST1.0 

(Laske et al., 2013) with 1 1  arc-deg spatial resolution. This model was prepared and 

administered by the U.S. Geological Survey and the Institute for Geophysics and 

Planetary Physics at the University of California. The CRUST1.0 consists of the ice, 
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water, (upper, middle and lower) sediments and (upper, middle and lower) crustal 

layers. The lower crustal layer is the Moho depth that we adopted in this study. When 

we compare the topography and Moho depth of the CRUST1.0 model (Fig.2) we can 

see clearly the spatial anti-correlation between the topography and the Moho depth 

with the maximum Moho deepening under the highest mountains, indicating that there 

is isostatic compensation. This has been shown previously in several studies such as 

Ebbing (2004) and Braitenberg et al. (1997) . 

3.2 Hydrologic data groundwater and GLDAS 

    We use two datasets to estimate the hydrologic contribution to the gravity field. 

The first is the direct water table observation in wells, which is available for the Po 

basin and the Venetian plain, but not for the surrounding mountain ranges. In Italy the 

Environmental Protection Agencies of Piedmont, Lombardy, Veneto and Emilia 

Romagna and the Friuli Venezia Giulia Region collect groundwater water level data 

of the Po basin and neighboring basins, and the data have been made available for the 

present study. We select the stations that have at least 8 years of observations time 

span for our analysis, so that the yearly variation does not affect the calculated trend. 

         The Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004), 

currently has four land surface models: Mosaic, Noah, the Community Land Model 

(CLM), and the Variable Infiltration Capacity (VIC). The hydrological data used in 

this study is from the GLDAS-1 Noah model. GLDAS provides the 3-hourly or 

monthly 0.25 and 1.0 degree products globally. In this study, the monthly 0.25 degree 

resolution products are employed. In the Noah model, there are four layers of soil 
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moisture that we integrate by summing up the four layers, obtaining a time-series 

from January 2003 to December 2013. Then a temporal model consisting of constant, 

linear and annually varying terms are fitted to the soil moisture time series at a regular 

grid as defined in Eq.(6). Finally, we obtain the spatially varying linear trend of the 

soil moisture from GLDAS-1 Noah model. 

3.3 Observed gravity changes from satellite 

The model GOCO05S (Mayer-Guerr and GOCO team, 2015) can provide us the 

gravity changes per year from linear spherical harmonic coefficients up to 

degree/order 100. GOCO05S was obtained from processing the data from GRACE: 

ITSG-Grace2014s (2003-2013), GOCE (2009-2013), kinematic orbits (Swarm 

A+B+C, TerraSarX, CHAMP, GRACE A+B, GOCE) and SLR (LAGEOS). The 

GOCO05S spherical harmonic coefficients consist of static (N= 280, corresponding to 

spatial resolution of about 70km), linear trend (N=100, ibid, about 200km), which is 

centered on year 2008, and yearly oscillation (N=100, ibid). As the GOCO05S gravity 

model combines information from GRACE and GOCE, the spatial resolution of its 

static part spatial can reach about 70 km, due to the use of all data from the GOCE 

mission; whereas its linear trend and yearly oscillation can achieve the resolution of 

200km, which is higher than the GRACE 300km spatial resolution. Therefore the 

combined GOCE-GRACE linear variation of the gravity field over the limited life-

span of GOCE has the greatest spatial resolution presently available, which is 

important given the relatively reduced size of the Alpine orogen, compared to the 

Himalaya, Tibet or Andes mountain ranges. Consequently the price for achieving a 
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better spatial resolution to detect the climatic or geodynamic changes is at a price of 

reduced time span of the observed gravity change used for the linear interpolation of 

the gravity change rate.    

4. Results and Discussion    

4.1 Description of the observed gravity change rate 

The GOCO05S (Mayer-Guerr and GOCO team, 2015) observed gravity change 

rate is shown in Fig.4. As seen from western to eastern Alps the gravity changes from 

negative to positive rates. In the Apennines region the gravity has a prevailing positive 

rate with maximum values up to about 0.6 10
-3

 mGal/yr. In the western sector of the 

Po basin the gravity signal is negative, while moving to the east it gradually increases 

toward positive values. In the western Pannonian basin at the foot of the Dinarides 

and over the Dinarides the gravity trend shows maximum negative signal, which 

accounts to about -0.6 10
-3

 mGal/yr. The northern Pannonian basin has a positive 

trend. In the north-western part of the figure corresponding to the Paris basin, we 

observe positive signal while the negative trend is seen southward, roughly 

corresponding to the Massif Central region. Along the Alpine mountain range, the 

spatial correlation between observed gravity change rate and topography is poor.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Fig.4 GOCO05S observed gravity change rate (A-B and C-D are the endpoints of the 

North-South and East-West profiles shown in Figure 10a,b, respectively.). 

 

4.2 Gravity change rate due to topography and Moho vertical movement 

The gravitational effect of topographic uplift (see Fig.5a) in the Alpine range 

reaches maxima up to about 0.2 10
-3

 mGal/yr. Over most of the Paris basin, Po basin 

and Pannonian basin region, it shows negative values while over the Apennines it 

gives positive ones. The spatial distribution of the gravitational effect of Moho uplift 

(see Fig.5b) is similar to the topographic effect but it is much smoother, as being the 

Moho deeper it acts as a low-pass filter. The Moho uplift signal in the Alps is positive, 

because as the Moho uplifts then the underlying mantle flows to fill the space, 

contributing to a positive gravity effect. In the other end-member model, with Moho 

lowering due to crustal thickening, the lower crust pushes the underlying mantle 

away, leading to a mass deficit that produces a negative gravity effect, as can be seen 

over the Alpine range (see Fig.5c)  
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Fig.5 (a) Gravity effect due to observed topographic uplift; (b) Gravity effect of 

Moho uplift with same rate as topography; (c) Gravity effect of crustal thickening and 

consequent isostatic Moho lowering. 

We computed the combined topographic uplift and the corresponding Moho 

uplift (named Model I) gravity effect (see Fig.6a) and the combined topography uplift 

and the corresponding Moho lowering (named Model II) gravity effect (see Fig.7a). 

Model I and Model II revealed that in the Alps the gravity signal can reach about 

0.1~0.3 10
-3

 mGal/yr, which contributes to about 25%~30% of the observed signal. 

Generally, the crustal thickening model (Model II) gives a smaller signal than the 

topographic uplift model, reducing the gravity effect to 50%. Comparison of the two 

models shows that in the Alps region, the gravity signal of Model II is much narrower 

than Model I, since the Moho lowering compensates some topography uplift gravity 

signal. For the Pannonian basin, Model I has a negative trend while Model II has a 

subdued signal, comprising positive and negative signals. Model I gave us much more 

negative signal for the Paris basin, while Model II shows on average subdued negative 

signal. In the Po basin both models together show negative gravity rate, and both have 

positive rate for the Apennines.  

 

4.3 Comparison of observed and modeled gravity change rates  

When we compare the gravity rates of the two models with the observed gravity 

signal we can see that in the Pannonian basin Model I agrees well with the 

observation, except that the amplitude of the modelled signal is too small and 
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reproduces only about 20% of the amplitude; Model II gives a weak signal close to 

zero, with some small negative values. In the eastern part of the Alps both models 

closely agree with observation, predicting positive rates; Model I shows higher 

amplitude than Model II because Model I enhances the topographic uplift gravity 

signal by Moho uplift, while Model II compensates part of the signal with Moho 

lowering. As the observation gravity signal is calculated with spherical harmonic 

coefficients up to degree/order 100, in order to make a consistent comparison we 

applied a 500km Gaussian filter to both Models I and II. The results are shown in 

Figs.6b and Fig.7b, and it is seen that the filtering reduces the maximum amplitudes 

of the modelled gravity rate, since it smooths the variations. When we compare the 

filtered results with the observed change rate, we find that the modelled signal can 

contribute with up to 10% to the observations, and that the relative contribution is 

stronger where the topographic vertical movement is strongest, and the observed 

gravity change rate is low. An example is given by the Po basin, where due to the 

strong subsidence the contribution of the topography could be as large as -0.04 10
-3

 

mGal/yr, against an observed rate of 0.3 10
-3

 mGal/yr. We see that the observed signal 

has greater amplitude than the signal expected through the vertical movements, and 

only partially correlates with the predicted gravity signal, so it is masking the 

uplift/subsidence signal due to a further mass change.  
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Fig.6 (a) Combined topographic uplift and the corresponding Moho uplift gravity 

effect; (b) filtered with 500km Gaussian filter.  

In the Po basin it could be argued that the subsidence is due to compaction of 

sediments, which would reduce the amplitude of the mass change, and would depend 

on the initial porosity and its evolution in time. If instead the subsidence is due to 

extraction of water in the deeper layers, with consequent water release from the clay 

acquitard, being the lowest sealing layer (Martinelli et al., 2014), the subsidence 

would be due to a mass loss of water, and not rock of a similar volume.  
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Fig.7 (a) Combined topographic uplift and the corresponding Moho lowering gravity 

effect; (b) filtered with 500km Gaussian filter. 

In the Alpine range the observed uplift cannot be put away as non-existing, since 

it is well measured by GPS, and the uplift is consistent over the entire mountain 

range. Presently it is masked by the other mass changes, presumably atmosphere and 

hydrologic effects, but the models we have calculated show that a better 

understanding of the non-tectonic mass changes will allow to isolate the tectonic 

gravity signal and draw conclusions on the crustal compensation mechanism, since it 
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affects both the geometry of the gravity rate and the amplitude.  

 

4.4 Estimated gravity change rates due to hydrology 

In order to verify whether the observed rates agree with the hydrologic signal, we 

calculate the expected change of the Po basin with the hydrologic data and for the 

entire region using the GLDAS-1 Noah model moisture product. The observed water 

levels are available in the lowlands, and are densely distributed (see Fig. 8a). Trends 

calculated over periods comparable with those from other data reach peaks of 1.5 

m/yr, with most values being confined to a trend of 0.3 m/yr. Converting this trend 

into water mass overestimates the expected signal, because the porosity is not 

accounted for. But the porosity is not available and the groundwater is in very 

different environs, ranging from sand to gravel, so a more realistic estimate is not 

feasible. What the predictions do show is the sign and pattern of the expected gravity 

variation, and the maximum possible amplitude. The gravity change is negative at the 

foot of the Apennines, and moderately positive at the northern and southern border of 

the Po basin (see Fig. 8b). Gravity rates are very strong and reach 20 10
-3

 mGal/year. 

This value would correspond to a water-mass completely filling the volume of the 

changing water level, but can be reduced by a factor 10 or 100 when considering 

presence of sand or gravel, leading to rates in the order of 2 10
-3

 mGal/year or 0.2 10
-3

 

mGal/year.  
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Fig.8 (a) Observed Ground water average change rate from direct piezometric 

observations; (b) the corresponding modelled gravity change rate. 

The GLDAS-1 Noah model (see Fig.9a) is consistent with the local piezometers 

of the Po basin, showing a drawdown of water level at the foot of the Apennines, and 

an increase of level at the southern and northern border of the basin. At larger scales, 

it is seen that the entire border of the Alps shows an increase of water level, with 

lower slightly positive values over the range. Paris basin shows a positive increase 

rate, the Pannonian basin shows a negative rate, disturbed by local positive 
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increments. Calculating the gravity change rate for the moisture model leads to values 

up to 1 10
-3

 mGal/year (see Fig. 9b). To be comparable with the observed gravity rate, 

we apply again the low pass filter, which eliminates all detailed variations, reducing 

the amplitude to a value of 0.4 10
-3

 mGal/yr and shows only broad patterns (see 

Fig.9c). The entire Italian territory south of the river Po has a small negative rate, the 

Alpine range and Paris basin have a positive rate, and the western Pannonian basin 

has negative rate.  Comparison to the observed rates (see Fig.4) reveals several 

inconsistencies, in particular over the Po basin and Apennines, over the Alpine range 

and west of it, in the French territory. The Pannonian basin matches the observations, 

characterized by a negative gravity rate. The order of magnitude of the observed and 

hydrologic signal is similar, but the pattern is only partially consistent, implying that a 

further mass variation must exist that generates the observed gravity change.  

 

a  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

b 
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Fig.9 (a) GLDAS soil moisture linear change rate (2003-2013); (b) the corresponding 

gravity change rate up to degree/order 720; (c) the corresponding gravity changes up 

to degree/order 100. 

For illustration, we select a north-south (A-B) and east-west (C-D) profile (see 

Fig.10) to display the different signals. Profile A-B cuts the Apennines, the Po basin 

and the Alps, centered on longitude 11°, and profile C-D cuts the Massif Central, the 

Alps and the Pannonian basin, centered on latitude 46°. From profile A-B (see 
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Fig.10a) we find that the ongoing uplift measured by GPS is contributing to increase 

the existing topography, and has maximum uplift rates 0.5° south of the maximum 

topography. The flat basin area is in strong subsidence. The observed gravity change 

rate over the same period has the same order of magnitude, but not the same pattern, 

since gravity increases over the Po basin and decreases over the Alps. An important 

outcome of our work is that the tectonic uplift/subsidence contributes to a signal that 

is in the order of magnitude of the observations. It can therefore not be dismissed as 

negligible. The fact that it does not match the observations implies that the tectonic 

correction is necessary in order to correctly evaluate the remaining contributors to the 

observed gravity change signal. The correspondence between tectonic and observed 

gravity rate does not improve in the profile C-D (see Fig.10b): in fact it shows that 

moving from the Massif Central to the Alps the observed signal is independent of 

surface uplift. Only close to the Pannonian basin the topography subsidence matches 

the observed negative change rate. From the above analysis we can see that the 

resolution of the present gravity satellite missions is such that tectonic gravity effects 

must be considered in order to catch the correct hydrological signal. Since the vertical 

ground motion rates are widely monitored by GPS, the tectonic correction can be 

made in many areas of the globe.  A bonus for future satellite missions, with much 

higher spatial and temporal resolution, is to allow distinguishing the tectonic signal 

from the climatic signal.  
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Fig.10 (a) A-B profile (GOCO05S Trend stands for observation gravity change, 

Combined(T_MU) stands for the combined gravity changes of topographic uplift and 

the corresponding Moho uplift, Combined(T_ML) ) stands for the combined gravity 

changes of topographic uplift and the corresponding Moho lowering, Topography 

stands the topography along the profile.); (b) C-D profile (ibid) 

 

5. Summary and concluding remarks 

Two mechanisms are modeled for the expected gravity change rate over the 

Alpine arc and surrounding areas, based on the vertical surface movement rates from 

dense GPS observations. We computed topographic uplift, associated Moho uplift 
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considering an unchanged crustal thickness, and Moho lowering due to crustal 

thickening. The two models predict gravity changes that are at the level of 10
-3

 

mGal/yr, with the effect of pure topography uplift being bigger than Moho uplift and a 

bit bigger and of opposite sign than the Moho lowering due to isostatic crustal 

thickening. From the above analysis we conclude that tectonic effects cannot be 

neglected when studying gravity changes over orogens, since it contributes to about 

20% in amplitude of the observed signal. Ground water level changes contribute to a 

gravity signal of up to 20 10
-3

 mGal/yr in the region affected by the greatest water 

drawdown, converting piezometric water rise to underground water level change. This 

value is an absolute upper limit, as it is probably smaller by a factor 10 to 100 due to 

porosity, that is the mass change would be reduced if only the percentage of void 

spaces would be substituted by water. The GLDAS-1 Noah model of soil moisture is 

consistent with the pattern shown from the piezometers, where available. The 

GLDAS-1 derived rates are up to 1 10
-3

 mGal/yr. The two models topography/Moho 

models and the hydrologic models do not explain the observed gravity change over 

the Alpine arc, which has a pattern uncorrelated with the topographic uplift and partly 

correlated with the hydrology. The observed rate likely contains another signal that 

masks the tectonic signal and is not present in the hydrologic observations. If the goal 

of a future study would be to distinguish between one or the other geodynamic uplift 

first the remainder signal has to be reduced. In the Pannonian basin the observations 

and the model both predict a matching negative gravity change rate.  

The complete understanding of the various mechanisms that drive topography 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

uplift involves broad disciplines such as modeling the crustal stress and deformation, 

rheology of the crust and lithosphere, and accumulation of seismic energy. The 

precise and high resolution observed gravity change gives constrains on the possible 

geodynamic models, because the deep density changes must fit the gravity change 

rates. Our work shows that the distinction between crustal uplift and crustal 

thickening requires the recovery of the field at the level of 0.1 10
-3

 mGal/year, with a 

resolution of 100km. This field requirement is achievable with a satellite mission of 

the improved GOCE type, but with a life-span expectance of at least 6 years, in order 

to robustly retrieve the gravity rates. The yearly and seasonal signal enters the 

observations, and can be corrected by statistical analysis starting with a time interval 

of about 6 cycles. The work presented in this study sets the requirements for the next 

generation of gravity satellite missions when one goal is to model the geodynamic 

processes of the orogen at deep crustal level.    
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Highlights: 

 The GOCE gravity field revolutionized the details in geologic regional structures that can 

and were identified. 

 Here we seek to interpret for the first time the most recent GOCE gravity field, obtained 

optimizing the entire GOCE acquisition series, and integrating it with the field from 

satellite GRACE. 

 The new time variable field has higher resolution than that from GRACE alone and we 

interpret it over the entire Alpine range. 

 We find that the resolution of the field is such, that the orogen building mechanism can be 

distinguished, whether a pure uplift or a crustal thickening. The Alpine uplift contributes 

to 20% of the observed GOCE field, which displays a variation that cannot be attributed 

to neither hydrology nor tectonic uplift, and requires further investigation.  
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