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3. Gravity processing
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Surface heat flow measurements in central 

Europe, as available in the global heat flow 

database (heatflow.und.edu). Blank areas, wich rely on fill-in, are obtained with a grid of distance 

to nearest measurement. 100% white = more than 40 km.

Gridded surface heat flow, by kriging and low-

pass filtering (330 km Gaussian).

  Heat flow is a direct observable of the planetary 
thermal state, a complex superposition of contributions. 
Among those, the heterogeneity in crustal radiogenic 
heat hinders both the estimation of sub-crustal 
temperatures and the interpolation of surface 
measurements. These are irregularly sampled, as is o�en 
the case with terrestrial data.
  On the other hand, global gravity models provide 
uniform coverage, regardless of previous exploration, 
and satellite-only solutions including data from GOCE 
(ESA) have been proved suitable in retrieving the crustal 
geometry at regional scale [1].
What if we tie a heat production estimate to a grav-
Moho depth?

Processing of gravity data:
- GOCE-only global model (GO_CONS_GCF2_TIM_R5) [2]
- Reduction for far-field effects [3] of topography, isostasy 
and regional sediments. All effects 8 km over GRS80, S.A.

4. Thermal modelling
   We base our thermal modelling on a steady 
state, 3D conduction hypothesis, surface to 
thermal lithosphere-asthenosphere boundary 
(1300 °C), allowing for non uniform heat 
production and thermal conductivity and non 
flat upper and bottom boundaries.

   The heat equation is solved with a finite 
difference scheme on a rectilinear domain, 
coarsely discretised at higher depths.
Temperature dependence of k is accounted for 
through subsequent substitution, achieving 
sub-degree variations at the 4th iteration.

Processing of heat flow data: we filter out short 
wavelengths, attributing them to near surface heat 
transfer regimes (e.g. fluid circulation), and re-grid the 
measurements to a 20x20 km reticule of cell medians.

Thermal reference model: we set the sediments 
(topography to crystalline basement) and the sub-
continental lithospheric mantle (SCLM, from Moho to 
LAB) to reference values of density, th. conductivity, heat 
production and their relationship to temperature and/or 
depth.

Integration with other data:
- Lithosphere-Asthenosphere boundary from LITHO1.0 [6]
- Sediments from EuCRUST07 [7]

SEDIMENTS

UPPER CRUST

LOWER CRUST

SCLM
LAB, set at 1300 °C

}

topography, set at 20°C

first guess: reference values iterative fitting

residual misfit (meas. - mod.)gridded measurements modelled surface HF

35 97 -17 28

    Residuals are attributed to variation in the heat production of the upper crust, 
unaccounted for in the initial guess. We fit it through iterative correction columns where 
surface measurements are available. A natural neighbor gridder fills in the others.
At iteration 5, maximum surface HF misfit is less than 0.5 mW/m2.

fitted heat prod. of upper crust resulting surface HF

initial
guess
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Effect of crustal contribution on sub-crustal heat flow

OUTCOME

- Successful integration of GGM and heat flow 

measurements: straightforward work flow from gravity 

functional to thermal parameters.

- Flexible, lightweight modelling enables fast testing of 

lithospheric scale thermal behaviour.

- Non-linear superposition of crustal and sub-crustal 

heat flow contributions hinders simple back-stripping 

approach (no simple subtraction) - however iterative, 

subsequent substitution converges fast.

OPEN ISSUES

- Attributing all the misfit of a first guess to one 

parameter is useful, but a large simplification is 

involved.

- Even without parameter uncertainty, separation of

crustal and sub-crustal component is ambiguous.

- External observables, independently modelled, can be 

integrated to validate model.

(e.g. part of this test area shows a direct crust-lithosphere 

thickness relationship: assigning lower crustal heat 

production or lower SCLM conductivity results in similar 

output - albeit with different surface footprints)

FURTHER DEVELOPMENT

- Evaluation of propagation of uncertainty and method 

stability.

- Constrain on Qc/Qm partition: geothermal (estimated) 

vs geodetic elastic thickness.

- Gravity segment: define a criterion for regional 

reduction global functionals, adopt a more versatile 

Moho inversion scheme.
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