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2. INTERPRETATION OF SEISMIC REFLECTION PROFILES

4. GRAVITY MODELS 5. NUMERICAL MODELS

The Congo basin (CB) occupies a large part of the Congo Craton (1.2 million km2) covering approximately 10% of the 

con�nent. It contains up to 9 km of sedimentary rocks from Mesozoic un�l Quaternary age. The forma�on of the CB 

started with a ri�ing phase during the amalgama�on of the Rodinia supercon�nent at ~ 1.2 Gyr and the main 

episodes of subsidence occurred during the following post-ri� phases in the Neoproterozoic and Paleozoic, separated 

by late Pan-African compressional inversion [1]. A�er a new compressional inversion at the end of the Permian, 

sedimenta�on resumed during the Mesozoic; since Cretaceous, the CB has been subjected to an intraplate 

compressional se�ng due to ridge-push forces related to the spreading of the South Atlan�c Ocean [1]. 

In this study we first interpreted the seismic reflec�on profiles and well logs data located inside the central area of 

the CB, to reconstruct the stra�graphy/tectonic evolu�on of the basin. A�erwards, we compared geological and 

geographycal informa�on to es�mate the velocity, density, thickness of the sedimentary layers and the depth of the 

lithostra�graphic units. The results have been used as input parameters for a 3D numerical simula�ons, tes�ng the 

main mechanisms of forma�on and evolu�on of the CB. To study this, we used the 3D thermomechanical code 

I3ELVIS [2] to simulate the ini�al ri� phases. For the first experiments, we assumed that the Congo craton is made of 

four blocs of Archean age. We applied extensional stresses in the N-S and E-W direc�ons (orthogonal stresses) [1] to 

test the hypothesis of the forma�on of a mul� extensional ri� in a cratonic area. The results of these first numerical 

experiments show that the deforma�on is localized in the central part of the CB.
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Fig.1 [A-D]: Depth of the main stratigraphic units. Black lines  and circles show the location of the seismic reflection profiles and four boreholes, respectively.

Fig.2 [A-B]: Two examples of interpreted seismic reflec�on lines. Profile A is the combina�on of R15-R9-R10-R16. Profile B corresponds to seismic line L56.
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Fig.3 [A,B,C,D]: The Global gravity models. GO_CONS_GCF_2_TIM_R5 is a gravity field model obtainded by the combina�on of satellite gravity mission GOCE. Maximum degree:280. Eigen-6c4 contains the complete data of the GOCE mission and combined with of 

LAGEOS, GRACE and DTM data.The gridstep is 0.1° and the maximum degree is 2190.
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Fig.3 [A,B,D,E]: Gravity disturbance (GD) and Bouguer disturbance field maps es�mated from GOCE (GO_CONS_GCF_2_TIM_R5, maximum 
spherical harmonic degree: 280; grid resolu�on: 0.25) and Eigen (Eigen 6c4, maximum spherical harmonic degree: 2190, grid resolu�on: 0.05) 
gravity models. Eigen-6c4 contains the complete data of the GOCE mission, combined with those of LAGEOS, GRACE and Terrestrial data. [C]: 
Topography map. The model used is Etopo1 (maximum spherical harmonic degree: 2250, grid resolu�on: 0.05, h�p://icgem.gfz-potsdam.de/
ICGEM/, 2008). Over the topography, the differences between the GD calculated using the Terrestrial data and Eigen-6c4 model are displayed. 
The histogram of residuals [F] shows a good agreement between the Terrestrial data and Eigen 6c4 model. 
From the GD we iden�fy two types of anomalies (Black boxes): one with a long wavelength that covers the en�re area of the Congo basin and a

second one with a short wavelength, having a NW-SE trend, which corresponds to the main depocenters of sediments (see the interpreta�on of 
the seismic reflec�on profiles in Fig. 1 A-D).

The 3D thermomechanical I3ELVIS is based on the conserva�on of mass, momentum and energy. It uses a visco plas�c rheology and is based on a finite difference approach using a 
staggered grid and the markers in cells technique. The mechanical equa�on of momentum and mass is solved for a compressible non-Newtonian-visco-plas�c fluid. The 3D 
computa�onal domain covers 4050 km x 4050 km x 392 km with the resolu�on of 405 nodes for 4050 km: 10 km horizontal resolu�on, same for the ver�cal one with 2 km 
resolu�on. The tests have been conducted dividing the area into four cratonic blocks of size 1000 km x 1000 km, subjected to mul� extensional stresses into orthogonal direc�ons (N-
S, E-W). Each craton moves in both direc�ons 5 cm/yr. On the top, there is a layer of s�cky air of 20 km of thickness. The ver�cal size of the cratonic blocks and area off-cratons is 250 
and 150 km, respec�vely. The Moho depth is located at 55 km. All boundaries are free-slip. The thermal distribu�on of the con�nental lithosphere is calculated following a linear 
increase from 273K at the surface to 1698 K at the base of the cratonic blocks and to 1648 K at the base of the area off-cratons.
Fig.4 [A-B] Cross-sec�on of the temperature distribu�on at the �me step 0.09 Myr (A) and 15 Myr (B).  We can observe the upli� of the asthenosphere in the central part of the area, 
due to the extensional stresses (B). [C-D] Lateral varia�on of viscosity in the upper mantle at the �me step 0.09 Myr (C) and 15 Myr (D). We can observe a progressive weakening 
from the center to the corners of the area, in response to the extensional stresses.. 
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Table 1. Major tectonic events of the Congo basin from Archean to Cenozoic period. Colored circles refer to the main seismic horizons 
(Fig.2). 
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