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1. ABSTRACT 2. INTERPRETATION OF SEISMIC REFLECTION PROFILES

The Congo basin (CB) occupies a large part of the Congo Craton (1.2 million km?) covering approximately 10% of the I T B P s 0, e | e ey
continent. It contains up to 9 km of sedimentary rocks from Mesozoic until Quaternary age. The formation of the CB Iy < - o e -
started with a rifting phase during the amalgamation of the Rodinia supercontinent at ~ 1.2 Gyr and the main \ R3 @ T | % % 0 tiﬁﬁ
episodes of subsidence occurred during the following post-rift phases in the Neoproterozoic and Paleozoic, separated P [ = == Ny 4 N [ o
by late Pan-African compressional inversion [1]. After a new compressional inversion at the end of the Permian, 1 | _ Z Z ' :2:5 _ ij
sedimentation resumed during the Mesozoic; since Cretaceous, the CB has been subjected to an intraplate | < ?g ?g < ZS ( i
compressional setting due to ridge-push forces related to the spreading of the South Atlantic Ocean [1]. ' m ' -0 -

In this study we first interpreted the seismic reflection profiles and well logs data located inside the central area of T e T T T e T 2vE e e >N T
the CB, to reconstruct the stratigraphy/tectonic evolution of the basin. Afterwards, we compared geological and Fig.1 [A-D]: Depth of the main stratigraphic units. Black lines and circles show the location of the seismic reflection profiles and four boreholes, respectively.
geographycal information to estimate the velocity, density, thickness of the sedimentary layers and the depth of the <«—— RIORI6 156 Purple (and profile, good qualy) RO5, northern extremity

lithostratigraphic units. The results have been used as input parameters for a 3D numerical simulations, testing the
main mechanisms of formation and evolution of the CB. To study this, we used the 3D thermomechanical code
I3ELVIS [2] to simulate the initial rift phases. For the first experiments, we assumed that the Congo craton is made of
four blocs of Archean age. We applied extensional stresses in the N-S and E-W directions (orthogonal stresses) [1] to
test the hypothesis of the formation of a multi extensional rift in a cratonic area. The results of these first numerical
experiments show that the deformation is localized in the central part of the CB.
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[1] De Wit, M.J., Stankiewicz, J., Reeves, CV., (2008), Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans Distance along the profils (km) Distance along the profile (ki)

Atlantic corruption, 294, 10.1144/SP294.20, Geological Society, London, Special publications. ‘ | | Fig.2 [A-B]: Two examples of interpreted seismic reflection lines. Profile A is the combination of R15-R9-R10-R16. Profile B corresponds to seismic line L56.
[2] Gerya, T., Introduction to numerical geodynamic modelling, Cambridge University Press. T. Gerya 2009.
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3. TECTONIC EVOLUTION 4. GRAVITY MODELS . 5. NUMERICAL MODELS
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unconformity T h Th del d is Et 1 . herical h ic d . 9950 id lution: 0.05, http://i f tsd de/ computational domain covers 4050 km x 4050 km x 392 km with the resolution of 405 nodes for 4050 km: 10 km horizontal resolution, same for the vertical one with 2 km
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oroterozoic PSS Acou;::ecr;f;f"me Basement Archean cores ICGEM/, 2008). Over_ the topography, the differences between the GD Calcu.latEd using the Terrestrial data and Eigen-6c4 model are displayed. S, E-W). Each craton moves in both directions 5 cm/yr. On the top, there is a layer of sticky air of 20 km of thickness. The vertical size of the cratonic blocks and area off-cratons is 250
The histogram of residuals [F] shows a good agreement between the Terrestrial data and Eigen 6c4 model. and 150 km, respectively. The Moho depth is located at 55 km. All boundaries are free-slip. The thermal distribution of the continental lithosphere is calculated following a linear
(Tgité'g)l- Major tectonic events of the Congo basin from Archean to Cenozoic period. Colored circles refer to the main seismic horizons From the GD we identify two types of anomalies (Black boxes): one with a long wavelength that covers the entire area of the Congo basin and a increase from 273K at the surface to 1698 K at the base of the cratonic blocks and to 1648 K at the base of the area off-cratons.
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