Reconstruction of the sedimentary structure and subsidence of the Congo Basin using geophysical data and numerical models

F.Maddaloni¹, D.Delvaux², J.Munch³, M.Tesauro^{1,4}, T.Gerya³, C.Braitenberg¹ ¹ Dept. of Mathematics and Geosciences, University of Trieste, Trieste, Italy; ²Royal Museum of Central Africa, Tervuren, Belgium;³Institute of Geophysics, ETH-Zurich, Switzerland, ⁴ Dept. of Earth Sciences, Utrecht University, Utrecht, Netherlands

1. ABSTRACT

The Congo basin (CB) occupies a large part of the Congo Craton (1.2 million km²) covering approximately 10% of the continent. It contains up to 9 km of sedimentary rocks from Mesozoic until Quaternary age. The formation of the CB started with a rifting phase during the amalgamation of the Rodinia supercontinent at ~ 1.2 Gyr and the main episodes of subsidence occurred during the following post-rift phases in the Neoproterozoic and Paleozoic, separated by late Pan-African compressional inversion [1]. After a new compressional inversion at the end of the Permian, sedimentation resumed during the Mesozoic; since Cretaceous, the CB has been subjected to an intraplate compressional setting due to ridge-push forces related to the spreading of the South Atlantic Ocean [1]. In this study we first interpreted the seismic reflection profiles and well logs data located inside the central area of the CB, to reconstruct the stratigraphy/tectonic evolution of the basin. Afterwards, we compared geological and geographycal information to estimate the velocity, density, thickness of the sedimentary layers and the depth of the lithostratigraphic units. The results have been used as input parameters for a 3D numerical simulations, testing the main mechanisms of formation and evolution of the CB. To study this, we used the 3D thermomechanical code I3ELVIS [2] to simulate the initial rift phases. For the first experiments, we assumed that the Congo craton is made of four blocs of Archean age. We applied extensional stresses in the N-S and E-W directions (orthogonal stresses) [1] to test the hypothesis of the formation of a multi extensional rift in a cratonic area. The results of these first numerical experiments show that the deformation is localized in the central part of the CB.

[1] De Wit, M.J., Stankiewicz, J., Reeves, C.V., (2008), Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans Atlantic corruption, 294, 10.1144/SP294.20, Geological Society, London, Special publications. [2] Gerya, T., Introduction to numerical geodynamic modelling, Cambridge University Press. T. Gerya 2009.

Stratigraphic Periods / Era		Seismic reflectors & sequences (Kadima et al., 2015)		Units	Tectonic / depos. context	ensity	Age max	Age min	
Ceno	zoic	Seq 6: Subsurface		Silcretes, laterites, aeolian deposits			55	0	
%		Denudatio	n 1-2 km in Samba & D	ekese wells, norr	nal faults in Kasai		94	55	
Cenoma Turoi	anian - nian			Kwango	Lacustrine <i>,</i> fluviatile	1,87	110	94	
%	6		Parallel highly	Thrust faultir	ng in Samba well		11	LO	
Late A	lbian	Cretaceous	grading upwards to wavy	Bokungu	Fluvio-deltaic	2,05	110	100	
Albian Kimmeridgian -		Seq 5a	reflectors	Loia	ephemeral lakes	2,09	132	110	
Barremian -	- Valangian	Jurassic		Stanleyville	shallow lacustrine	2,14	157	132	
	Hiatus	Base Jura	assic unconformity	Regior	al erosion		200	157	
	Triassic	Seq 4c: Karoo	Parallel to subparallel seismic pattern of	Haute Lueki	Continental, warmer and dryer	2,29	250	200	
Hiatus	P/T			Permo-Triassic unconformity	Far-field compres- sional deform.		2!	50	
	Late Carb. - Permian			Karoo	Glacio-lacustrine	2,25	320	250	
Late Devor Carb. glaci	nian-Early al period		moderate to low continuous reflectors	Congo basin at South pole	Regional erosion		380	320	
Mid- Palaeozoic?		Seq 4b: Red Beds		Red Beds	Syndepositional extension	2,39		380	
Early Palaeozoic?		Seq. 4a: ??		Post-orogenic molassic deposits (Aruwimi -Inkisi - Kundelungu?)		2,46	530		
Pan-African deformatio		Pan-African	regional unconformity	Folding (ama	lgamation against		53	30	
		Seq. 3	Banded seismic pattern, slightly divergent	Siliciclastics		2,48			
Neo-prot	erozoic		Transparent seismic pattern with some	Carbonates- Evaporites-	Post-rift subsidence	2,61	1000	530	
		Seq. 2	continuous reflectors	Clastics	Carlanda (
		Seq. 1: Dolostones	layered seismic pattern, highly continuous strong reflectors	dolostones caped by lavas	restricted marine	2,75	1040	1000	
Meso-pro	Meso-proterozoic		low-amplitude discontinuous transparent seismic	Mbuji-Mayi BII Clastics	Syn-rift, in mobile belt	2,62	1065	1040	
		Top crystalline basesment							
Paleo	Meso-	u Top			Mohile helts &				
prote	rozoic	basement	Acoustic crystalline basement	Basement	Archean cores				

UNIVERSITÀ DEGLI STUDI DI TRIESTE

Acknowledgements:

work by author FM is being supported by a grant under the European Social Fund, through resources of Region Friuli Venezia Giulia in the form of a PhD fellowship at the University of Trieste. POR 2014-2020, HEaD UNITS. The contents expressed herein are those of the authors and do not necessarily reflect the views of the funding entities.