
Acknowledgements:
work by author AP is being supported by a grant funded by resources of
Region Friuli Venezia Giulia and the European Social Fund, provided in the form of
a PhD scolarship at the University of Trieste. ID: FP1687011001
AP benefited of a 12-month visiting period at IAPG, TU Munich.

*contact: alberto.pastorutti@phd.units.it
Tectonophysics & Geodynamics Research Group

Dept. of Mathematics and Geosciences, Univ. of Trieste
via Edoardo Weiss, 1 34128 Trieste (Italy)

Forward Modelling Algorithm

Density reference and layer splitting

Terrain correction: input topography, water, ice

Sub-surface data: LITHO1.0 [7]

Lithospheric mantle: velocity-to-density conversion

Uncertainty propagation through random modelling

From disturbance-uncertainty to Moho-uncertainty
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We rely on the SHTOOLS [1] implementation of Wieczorek & Phillips (1998) 
algorithm [2] spectral forward modelling algorithm for the potential of a relief 
with lateral variations of density, referenced to a spherical interface.
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We set up a layer-wise forward modelling scheme:

Global density reference: adapted from AK135[4], discretized in geocentric 
ellipsoidal shells of constant density. The "known densities" of the modelled 
layers are expressed against this reference, a�er slicing each layer according to 
the shells it intersects.
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Layer splitting

We use the Earth2014, 1 arc-min shape model [5] to obtain a terrain correction 
(TC). We forward modelled an ellipsoid-referenced solid topography effect, 
plus bathymetry and ice stripping. When this TC is removed from a the 
observed gravity disturbance, we obtain "No Ellipsoidal Topography of 
Constant density" gravity disturbance (NETC, see [6]).

• Readily available, global depth-density model, layer defined: topography to 
lithosphere-asthenosphere boundary.
• Surface wave based, from an integrated starting model (multiple sources): no 
information on coverage and data uncertainty, this suggest caution.
• We consider it fit-for-purpose for this uncertainty-propagation test.

Data extraction: from the 1 arc-degree 
tassellated LITHO1.0 to a regular 0.25° x 0.25° 
global grid, then to the spherical harmonics 
coefficents of eq. 1. We perform the 
triangulation+interpolation using StriPy [8].
Depth reference: we tie Earth2014 bedrock 
(provided as geocentric radius) to LITHO1.0 
top of first sediment layer. Depths are thus 
provided as spherical radii.
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• Vs to density for LITHO1.0 'LID' layer (Moho to LAB)
• density and Vs forward modelling using Perple_X [9]
• simple compositional model: Archon/Tecton, according to Griffin et al. 2009 [10]

• error assumptions on the input data: depth and density
• random modelling on 5000 independent draws

• aim: uncertainty expressed in "equivalent Moho depth" 

• parallel implementation, using the multiprocessing Python module [11]
• 3,3 seconds per sliced-layer, per worker, per draw (e.g. 2 hours on 40 workers)
• random draws are partitioned in 100-draws blocks
• the variance of g partitions of k draws is consolidated, using the following:

depth uncertainty, st. dev
5 % of depth

density uncertainty, st. dev
100 kg m-3

• simple error criteria (realistic, but no spatial variability)
• no error covariance information is included: each node assumed independent
• criteria for 5000 draws: high enough to observe power-law decay in error degreee variances
    (i.e. effect of assuming uncorellated errors attenuates)
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• no topography
• homogenous crust
• nomogenous mantle

• Global satellite-only gravity models provide unparalleled spatial homogeneity 
in coverage and quality, at length scales suitable for lithospheric density 
modelling.
• Geophysical inverse problems require isolating an anomalous signal in the 
observed gravity field, through removal of the effect of known masses (data 
reduction, e.g. topography, sediments ... )
• Error characteristics of gravity models: 3 orders of magnitude smaller than 
reduction uncertainty at the same length scales. Data reduction and inversion 
parameters are the main error sources.
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Results: forward modelled reductions
All functionals were computed at 10 km over GRS80, up to SH degree = 280

• realistic, data dependent, error estimates

• upper mantle model and velocity conversion
integrate available models, removal of lithosphere only shows LAB as artifact
compositional model: refine or assess effect of "coarse" assumptions?

• gravity-model-aware adaptation of reductions
truncating at maximum SH degree is not enough
e.g. take into account high-degree regularization of sat-only models

• error estimate of gravity model "a�er reduction"

• reproduction of "common" and "novel" reductions
from a topography-free to an (ideally) lithosphere-free disturbance (albeit with simple assumptions!)

relying on a layer-based, spectral domain forward modelling of reductions and propagated errors

 

Uncertainty of Satellite-gravity-derived Moho Estimates:
Contribution of Data Reductions
Alberto Pastorutti1*, Carla Braitenberg1, Roland Pail2

ESA living planet symposium
13-17 May 2019 | Milan, Italy

Session A5.02: Solid Earth

1Univ. Trieste
2TU Munich

Dept. of Mathematics and Geosciences
Inst. of Astronomical and Physical Geodesy

Trieste, Italy
Munich, Germany

[km]

[km]

[km]

TC, gr
terrain correction

GOCO05s, δg
GGM gravity disturbance

NETC, δg
No Ellipsoidal Topography of Constant density

SC, gr
sediment correction

SC NETC, δg
sediments corrected NETC disturbance

SC, σ(gr)
Sediment correction, standard deviation

correction due to modelled contrasts refined gravity disturbance

correction uncertainty
and equivalent Moho thickness

(±2σ error bars)

CC, gr
crystalline crust correction

FC NETC, δg
whole-crust (seds+crust) corrected  NETC disturbance

CC, σ(gr)
whole-CC correction, standard deviation

LIDC, gr
lithospheric mantle (LID) correction

LC NETC, δg
whole-lithosphere corrected NETC disturbance

LIDC, σ(gr)
LID correction, standard deviation

input GGM

cumulative thickness

degree variances spectra: layer against error correlation coefficients, against GGM concluding remarks

Room for improvement:

e.g. weight according to data density, observable - and error propagation from conversion 

Outcome (and collaterals):


