Uncertainty of Satellite-gravity-derived Moho Estimates: Contribution of Data Reductions

Alberto Pastorutti^{1*}, Carla Braitenberg¹, Roland Pail²

¹Univ. Trieste Dept. of Mathematics and Geosciences Trieste, Italy ²TU Munich Inst. of Astronomical and Physical Geodesy Munich, Germany

Density reference and layer splitting

— Background

Global density reference: adapted from AK135[4], discretized in geocentric ellipsoidal shells of constant density. The "known densities" of the modelled layers are expressed against this reference, after slicing each layer according to the shells it intersects.

Terrain correction: input topography, water, ice

We use the **Earth2014**, 1 arc-min shape model [5] to obtain a terrain correction (TC). We forward modelled an ellipsoid-referenced solid topography effect, plus bathymetry and ice stripping. When this TC is removed from a the observed gravity disturbance, we obtain "No Ellipsoidal Topography of Constant density" gravity disturbance (NETC, see [6]).

Sub-surface data: LITHO1.0 [7]

• Readily available, global depth-density model, layer defined: topography to lithosphere-asthenosphere boundary.

• Surface wave based, from an integrated starting model (multiple sources): no information on coverage and data uncertainty, this suggest caution. • We consider it **fit-for-purpose** for this uncertainty-propagation test.

___ **Data extraction**: from the 1 arc-degree tassellated LITHO1.0 to a regular 0.25° x 0.25° global grid, then to the spherical harmonics coefficents of eq. 1. We perform the triangulation+interpolation using StriPy [8]. **Depth reference**: we tie Earth2014 bedrock (provided as geocentric radius) to LITHO1.0 top of first sediment layer. Depths are thus provided as spherical radii.

Lithospheric mantle: vo
 Vs to density for LITHO1.0 'LID' density and Vs forward modelli simple compositional model: A
Image: series of the series
Temperature [K]
5200 5250 5
 Uncertainty propagation error assumptions on the input random modelling on 5000 ind depth uncertainty, st. 5 % of depth
 simple error criteria (realistic, but no no error covariance information is in criteria for 5000 draws: high enough (i.e. effect of assuming uncorellated)
• parallel implementation: • parallel implementation, using the <i>n</i> • 3,3 seconds per sliced-layer, per wor • random draws are partitioned in 100 • the variance of g partitions of k draw $Var(X_1, \dots, X_{gk}) = \frac{k-1}{gk-1} \left(\sum_{j=1}^g V_j + \frac{k(g-1)}{k-1} \right)$ → could be easily scaled t
From disturbance-unce
• aim: uncertainty expressed in "
ΟBSERVED δ(r, θ, φ)
Deferrer
[1] Wieczorek M A & Moschodo M (2010)
 Geochemistry, Geophysics, Geosystems [2] Wieczorek, M. A., & Phillips, R. J. (1998). lunar crust. Journal of Geophysical Res [3] Wieczorek, M. A. (2007). Gravity and top 165-206, doi:10.1016/B978-044452748- [4] Kennett, B. L. N., Engdahl, E. R., & Bular traveltimes. Geophysical Journal Interr [5] Hirt, C., & Rexer, M. (2015). Earth2014: 1 as gridded data and degree-10,800 sph and Geoinformation, 39, 103–112. doi:1 [6] Vajda, P., Ellmann, A., Meurers, B., Vaníd topographic, bathymetric and stripping 52(1), 19–34. doi:10.1007/s11200-008-0 [7] Pasyanos, M. E., Masters, T. G., Laske, G. of the Earth. Journal of Geophysical Re [8] Moresi, L. & Mather, B. (2019). Stripy, a F (constrained) triangulation in Cartesiar [9] Connolly, J. A. D. (2005). Computation of modeling and its application to subduc 2), 524–541. doi:10.1016/j.epsl.2005.04. [10] Griffin, W. L., O'Reilly, S. Y., Afonso, J. C. mantle: A re-evaluation and its tectonic petrology/egn033
[11] https://docs.python.org/3/library/mult [12] Sjöberg, L. E. (2013). On the isostatic gr

10.1093/gji/ggt008

Results: forward modelled reductions

All functionals were computed at 10 km over GRS80, up to SH degree = 280

*contact: alberto.pastorutti@phd.units.it Tectonophysics & Geodynamics Research Group Dept. of Mathematics and Geosciences, Univ. of Trieste via Edoardo Weiss, 1 34128 Trieste (Italy)

Acknowledgements:

work by author AP is being supported by a grant funded by resources of Region Friuli Venezia Giulia and the European Social Fund, provided in the form of a PhD scolarship at the University of Trieste. ID: FP1687011001 AP benefited of a 12-month visiting period at IAPG, TU Munich.